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Abstract

Granger causal analysis has been an important
tool for causal analysis for time series in various
fields, including neuroscience and economics,
and recently it has been extended to include in-
stantaneous effects between the time series to
explain the contemporaneous dependence in the
residuals. In this paper, we assume that the time
series at the true causal frequency follow the vec-
tor autoregressive model. We show that when the
data resolution becomes lower due to subsam-
pling, neither the original Granger causal anal-
ysis nor the extended one is able to discover the
underlying causal relations. We then aim to an-
swer the following question: can we estimate
the temporal causal relations at the right causal
frequency from the subsampled data? Tradi-
tionally this suffers from the identifiability prob-
lems: under the Gaussianity assumption of the
data, the solutions are generally not unique. We
prove that, however, if the noise terms are non-
Gaussian, the underlying model for the high-
frequency data is identifiable from subsampled
data under mild conditions. We then propose an
Expectation-Maximization (EM) approach and a
variational inference approach to recover tempo-
ral causal relations from such subsampled data.
Experimental results on both simulated and real
data are reported to illustrate the performance of
the proposed approaches.
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1. Introduction
Granger causal analysis (Granger, 1980) has been widely
used to find the temporal causal relations from time se-
ries. Time series x1 is said to cause times series x2 in the
Granger’s sense, if and only if the past and current values of
x1 contain useful information to predict the future values of
x2 that are not contained elsewhere.1 In practice, although
its nonlinear or nonparametric extensions exist, Granger
causal analysis usually assumes a linear model, and conse-
quently, the Granger causal relations can be seen by fitting
the vector autoregressive (VAR) regression model (Sims,
1980). When using VAR to estimate temporal causal re-
lations, one assumes that the data are obtained at the right
causal frequency, i.e., the VAR model serves as an approx-
imator to the true data-generating process. However, in
practice the causal frequency is usually unknown, and the
data are available at some fixed frequency such as daily,
weekly, or monthly. As a consequence, the sampling fre-
quency of the data is usually different from the true causal
frequency.

There are two typical aggregation schemes to generate low-
resolution or low-frequency data from high frequency ones.
One is by subsampling or systematic sampling: for ev-
ery k consecutive observations, one is kept, the rest being
skipped. We call k the subsampling factor. The other is to
take the local averages of k consecutive, non-overlapping
observations as the new observations. See Silvestrini &
Veredas (2008) for a survey on aggregation of univariate
and multivariate time series models. Subsampling is a com-
mon phenomenon in time series, and is our main focus in

1In physics, it might be more mathematically tractable to con-
struct theoretical models in continuous time, and often an exact
description requires the use of continuous time. However, we
would like to note that some time series are inherently discrete;
an example is the dividend paid by a company to shareholders
in successive years. Furthermore, even for continuous processes,
their causal interactions may take place at discrete points.
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this paper. As observations are temporally aggregated, the
observed “causal structure” may be different from the orig-
inal true one. As claimed in (Weiss, 1984), “some care
needs to be taken in causality testing, as causality is de-
fined for the true processes and not for the equation on
the (temporally) aggregated or sampled data.” Various con-
tributions have been made on how temporal aggregation
changes the Granger causal relations in the data (Rajaguru
& Abeysinghe, 2008; Breitung & Swanson, 2002); for in-
stance, temporal aggregation could cause spurious instan-
taneous correlations in the time series. However, little work
has been done to recover the temporal causal relations at the
proper causal frequency from the aggregated (or subsam-
pled) data. In this paper, we are concerned with whether
it is possible to recover the original causal relations at the
causal frequency from the subsampled data, and if it is, how
to do so.

Even if the original time series are generated by a VAR,
as the time resolution becomes lower, one can see that
the residuals are no longer contemporaneously indepen-
dent (Wei, 2006, Chapter 20). To account for that, in
addition to the time delayed causal relations, it was pro-
posed to incorporate instantaneous effects between the
variables (Hyvärinen et al., 2010). This extension has
received considerable interest in neuroscience and eco-
nomics. However, it is not clear how the discovered causal
relations are related to those at the original causal fre-
quency. In particular, as stated in (Granger, 1988), it was
advocated that there is no true instantaneous causality;2
spurious instantaneous causality may be found whenever
the interval at which data are collected is lower than the
causal frequency. In this paper, our results indicate that the
instantaneous causal relations estimated by those methods
are usually different from the true ones at the causal fre-
quency.

We aim to recover the linear temporal causal relations
from the subsampled data. We assume that the original
time series at the causal frequency are stationary. The
difficulty comes from the information loss in the missing
observations caused by subsampling. It has been shown
in (Palm & Nijman, 1984; Harvey, 1989) that with only
the second-order information of the low-resolution data,
usually the temporal causal relations are not identifiable.
We assume that the error or noise terms are non-Gaussian,
and under some additional mild conditions on the tempo-
ral causal relations, we show that interestingly, they can
be uniquely recovered from subsampled data. To this end,
we adopt the mixture of Gaussians for the distributions of
the noise terms, and propose two estimation approaches.
One is based on the Expectation-Maximization (EM) al-

2Instantaneous causality might happen, say, in quantum
physics. Here we focus on temporal causality.

gorithm; however, its computational complexity increases
very rapidly along with the dimension of the time series
and the subsampling factor k. The other resorts to the vari-
ational inference framework, making the estimation proce-
dure computationally efficient.

There has been plenty of work in economics for tempo-
ral disaggregation of the low-resolution time series, with
or without the side information from related indicators ob-
served at the desired high frequency (Harvey & Chung,
2000; Moauro & Savio, 2005; Proietti, 2006). However,
temporal disaggregation does not imply that the tempo-
ral causal relations in the high frequency data can be cor-
rectly recovered. The autocovariance structure of the low-
resolution time series usually does not contain enough in-
formation to identify all parameters in the high-frequency
model (Palm & Nijman, 1984; Harvey, 1989), and little at-
tention has been paid to find further conditions to ensure
that such parameters are identifiable. The work by Danks &
Plis (2014) aims to infer the causal structure at the correct
causal frequency directly from the causal structure learned
from the subsampled data; they do not assume any specific
form for the causal relations and their method is completely
nonparametric, but on the other hand, an MCMC search is
needed, which involves high computational load, and their
method cannot estimate the causal strength.

This paper is organized as follows. In Section 2 we review
Granger causal analysis with instantaneous effects, which
was recently proposed for finding causal relations in time
series when the VAR residuals are contemporaneously de-
pendent. In Section 3 we study the effect of decreasing
the temporal resolution of the time series by subsampling;
in particular, it is found that unfortunately, both the VAR
model and Granger causal analysis with instantaneous ef-
fects fail to recover the temporal causal relations under-
lying the data at the causal frequency. We then investi-
gate whether it is possible to recover the original temporal
causal relations from subsampled data. Interestingly, un-
der the non-Gaussianity assumption of the data as well as
other mild assumptions, we prove that the temporal causal
relations at the causal frequency can be recovered from
subsampled data. Next, in Section 4 we propose practi-
cal methods, including the EM algorithm and variational
inference procedure, to achieve so. In Section 5 we report
experimental results on both simulated and real data. Fi-
nally, Section 6 concludes the paper.

2. Granger Causality and Its Extension with
Instantaneous Effects

For Granger causal analysis in the linear case (Granger,
1980), one fits the following VAR model (Sims, 1980) on
the data:

xt = Axt�1 + et, (1)
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where xt = (x1t, x2t, ..., xnt)
| is the vector of the ob-

served data, et = (e1t, ..., ent)
| is the temporally and con-

temporaneously independent noise process, and A contains
the temporal causal relations. We call A the causal transi-
tion matrix.

Now let us assume that xt also contains instantaneous ef-
fects. Let B contains the instantaneous causal relations be-
tween xt. Equation (1) changes to

xt = Bxt +Axt�1 + et,

)(I�B)xt = Axt�1 + et,

)xt = (I�B)

�1
Axt�1 + (I�B)

�1
et. (2)

To estimate all involved parameters in Granger causality
with instantaneous effects, wo estimation procedures have
been proposed. The two-step method first estimates the er-
rors in the above VAR model and then apply independent
component analysis (ICA) (Hyvärinen et al., 2001) on the
estimated errors Hyvärinen et al. (2008). The other is based
on multichannel blind deconvolution, which is statistically
more efficient (Zhang & Hyvärinen, 2009).

3. Identifiability of the Causal Relations from
Subsampled Data

Suppose the original high-resolution data were generated
by (1). We consider low-resolution data generated by sub-
sampling (or systematic sampling) with the subsampling
factor k. Here we are interested in finding the causal tran-
sition matrix A which generated the original data from
the subsampled data. Traditionally, if one uses only the
second-order information, this suffers from parameter iden-
tification issues (Palm & Nijman, 1984), i.e., the same
subsampled (low-frequency) model may disaggregate to
several high frequency models, which are observationally
equivalent at the low frequency.

3.1. Effect of Subsampling (Systematic Sampling)

Suppose that due to the low resolution of the data,
there is an observation every k time steps. That is, the
low-resolution observations ˜

X = (

˜

x1, ˜x2, ..., ˜xT ) are
(x1,x1+k, ...,x1+(T�1)k); here we have assumed that the
first sampled point is x1. We then have

˜

xt+1 = x1+tk = Ax1+tk�1 + e1+tk

= A(Ax1+tk�2 + e1+tk�1) + e1+tk

= ...

= A

k
˜

xt +

k�1X

l=0

A

l
e1+tk�l. (3)

We denote by ~

et+1 the noise term, i.e., ~

et+1 =Pk�1
l=0 A

l
e1+tk�l. We call (A, e, k) the representation of

the kth order subsampled time series ˜

xt.

Equation (3) follows the vector autoregression (VAR)
model, and then the following result directly follows.
Theorem 1. If one fits a VAR model on the subsampled
data ˜

xt generated according to (3), as done by the tradi-
tional Granger causal analysis (Granger, 1980), the dis-
covery temporal causal relations are given by A

k as the
sample size T ! 1.

It has been pointed out (Marcellino, 1999) that the es-
timated time-delayed causal relation is not a time series
property invariant to temporal aggregation.3 Let us give
an illustration on this.

Misleading Granger causal relations in subsampled

data: An illustration Suppose A =


0.8 0.5

0 �0.8

�
. Con-

sider the case where k = 2. The corresponding VAR model
would be

˜

xt = A

2
˜

xt�1 + ~

et =


0.64 0

0 0.64

�
˜

xt�1 + ~

et.

That is, the causal influence from x2,t�1 to x1t is missing
in the corresponding subsampled data (with k = 2).

Suppose A =


0.6 0.6

0.6 �0.6

�
. Then the VAR model on the

subsampled data is

˜

xt = A

2
˜

xt�1 + ~

et,

where A

2
=


0.72 0

0 0.72

�
, ~et = e

0
t +Ae

0
t�1 =


e

0
1t

e

0
2t

�
+


0.6 0.6

0.6 �0.6

�
·

e

0
1,t�1

e

0
2,t�1

�
, and e

0
t�l = e1+(t�1)k�l. Clearly

the delayed causal relations between x1t and x2t are miss-
ing. Furthermore, one can see that Cov(~e1t,~e2t) = 0. If e0it
are Gaussian, ~e1t and ~e2t are independent from each other,
and thus there are no instantaneous causal effects. If they
are non-Gaussian,~et is a linear mixture of four independent
components, which are e01t, e02t, e01,t�1, and e

0
2,t�1, and it is

not possible to decompose it into two independent compo-
nents; that is, the Granger causal model with instantaneous
effects does not hold for the subsampled data.

3.2. Identifiability of the Causal Relations at the Causal
Frequency

Suppose the system (1) is stable. Then all eigenvalues of
A have modulus smaller than one (Lütkepohl, 2005). As

3More precisely, it gives a comprehensive study on the ef-
fects of temporal aggregation on exogeneity, causality, cointegra-
tion, unit roots, seasonal unit roots, impulse response functions,
and trend-cycles decompositions; it finds that cointegration and
unit roots are invariant to temporal aggregation, whereas the other
properties are not (Marcellino, 1999).
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a consequence, the eigenvalues of Ak become smaller and
smaller as k increases, and the estimate of Ak by fitting the
VAR model on ˜

X involves large estimation errors on finite
samples. Moreover, even if we can estimate A

k perfectly,
given the value of Ak, there are usually a large number of
possible solutions to A (Mitchell, 2003), which is different
from the case where A is a scalar.4

An important issue is the identifiability of A, i.e., whether
it is possible to identify the original temporal causal rela-
tions, as implied by A, from the low-resolution subsam-
pled data ˜

xt. In other words, suppose ˜

xt also admits an-
other representation (A

0
, e

0
, k), and we aim to see the re-

lationship between A

0 and A; in particular, if we always
have A

0
= A, then as n ! 1, the causal relationship at

the correct resolution, A, can be uniquely recovered from
the low-resolution data. In fact, it has been demonstrated
in (Palm & Nijman, 1984) that with only the second-order
information, usually A is not identifiable. That is, the same
low-frequency model may disaggregate to several high fre-
quency models, which are observationally equivalent at the
low frequency (according to the second-order statistics).
However, we shall see when non-Gaussianity of the data
is considered, the identifiability of A is achievable.

Let
L , [I A A

2 · · · Ak�1
]. (4)

The error terms in (3) correspond to the following mixing
procedure of random vectors:

~

e = L

˜

e, where (5)

˜

e = (e

(0)
1 , ..., e

(0)
n , e

(1)
1 , ..., e

(1)
n , ..., e

(k�1)
1 , ..., e

(k�1)
n )

|
.

The components of ˜e are independent, and for each i, e(l)i ,
l = 0, ..., k � 1, have the same distribution pei .

First, we note that under the condition that pei are non-
Gaussian, L can be estimated up to the permutation and
scaling indeterminacies (including the sign indeterminacy)
of the columns, as given in the following lemma.

Proposition 1. Suppose that all pei are non-Gaussian.
Given k and ˜

X which is generated according to (3), L can
be determined up to permutation and scaling of columns.

Proof. For the proof, let us introduce the following lemma.
It was proven in Kagan et al. (1973, Theorem 10.3.1).

4For instance, the 2 ⇥ 2 identity matrix

1 0
0 1

�
has in-

finite symmetric rational square roots given by 1
a


b c

c �b

�
,

1
a


b �c

�c �b

�
, 1

a


�b c

c b

�
, and 1

a


�b �c

�c b

�
, where b is a ar-

bitrary nonnegative integer and c and a are arbitrary positive inte-
gers such that b2 + c

2 = a

2 (Mitchell, 2003).

Lemma 1. Let~e = Jr and~e = Ms be two representations
of the n-dimensioal random vector ~e, where J and M are
constant matrices of orders n⇥ l and n⇥m, respectively,
and r = (r1, ..., rl)

| and s = (s1, ..., sm)

| are random
vectors with independent components. Then the following
assertions hold.

(i) If the ith column of J is not proportional to any col-
umn of M, then ri is Gaussian.

(ii) If the ith column of J is proportional to the jth column
of M, then the logarithms of the characteristic func-
tions of ri and sj differ by a polynomial in a neigh-
borhood of the origin.

Equation (3) is a VAR model, and by making use of the
second-order statistical information (i.e., autocovariances),
we can estimate A

k and get rid of the contribution of the
first term in (3). Then we focus on the noise part, which
is given in (5). Since all pei are non-Gaussian, according
to (i) of Lemma 1 or Theorem 1 in (Eriksson & Koivunen,
2004), we know that L can be determined up to the permu-
tation and scaling of columns.

We make the following assumptions on the underlying dy-
namic process (1) and the distributions pei , and then we
have the identifiability result for the causal transition ma-
trix A.

A1. The system is stable, in that all eigenvalues of A have
modulus smaller than one.

A2. The distributions pei are different for different i after
re-scaling by any non-zero scale factor, their charac-
teristic functions are all analytic (or they are all non-
vanishing), and none of them has an exponent factor
with a polynomial of degree at least 2.

The following identifiability result on A states that in var-
ious situations, A for the original high-resolution data is
fully identifiable.
Theorem 2. Suppose all of eit are non-Gaussian, and that
the data ˜

xt are generated by (3) and that it also admits
another kth order subsampling representation (A

0
, e

0
, k).

Let assumptions A1 and A2 hold. When the number of ob-
served data points T ! 1, the following statements are
true.

(i) A

0 can be represented as A0
= AD1, where D1 is a

diagonal matrix with 1 or �1 on its diagonal. If we
constrain the self influences, represented by diagonal
entries of A and A

0, to be positive,5 then A

0
= A.

5We note that this is usually the case in neuroscience and eco-
nomics.
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(ii) If each pei is asymmetric, we have A

0
= A.

(iii) If A is of full rank, all its diagonal entries are non-
zero, and the graph implied by A is weakly con-
nected,6 then we have that A0

= A for odd k and
that A0 must be A or �A for even k.

A complete proof of Theorem 2 can be found in Section 1
of the Supplementary Material.

3.3. Relation to Granger Causality with Instantaneous
Effects

In general, the estimated error terms in the subsampled
times series are not spatially independent any more. The
contemporaneous dependence in the noise terms inspired
the model of Granger causality with instantaneous ef-
fects (Reale & Tunnicliffe Wilson, 2001; Hyvärinen et al.,
2010); see (2). This model might provide an approximation
to the underlying causal relations; however, in principle it
does not hold for the low-resolution data obtained by sub-
sampling, as one can see from the following theorem.7

Theorem 3. Suppose the subsampled data ˜

xt were gener-
ated by (3) and that all of eit are non-Gaussian. Further
assume that A is not diagonal, such that there exist causal
relations between different time series. As T ! 1, for the
subsampled data ˜

xt, the model of Granger causality with
instantaneous effects, represented by (2), does not hold, in
that the error terms estimated with the VAR model are not
linear mixtures of only n independent components.

A complete proof of Theorem 3 can be found in Section 2
of the Supplementary Material.

4. Estimating the Temporal Causal Relations
from Subsampled data

As stated in the previous section, to recover the tempo-
ral causal relations from systematically subsampled data,
we have to make use of the non-Gaussianity of the data.
Therefore, we use a Gaussian mixture model to represent
each noise term pei , i.e., pei =

Pm
c=1 wi,cN (ei|µi,c,�

2
i,c),

where wi,c � 0,
Pm

c=1 wi,c = 1, and
Pm

c=1 wi,cµi,c =

0, i = 1, ..., n. The VAR model on the low resolution data
6In an undirected graph, two vertices xi and xj are called con-

nected if it contains a path from xi to xj . A undirected graph is
said to be connected if every pair of vertices in the graph is con-
nected, and furthermore, a directed graph is called weakly con-
nected if replacing all of its directed edges with undirected edges
produces a connected undirected graph (Diestel, 1997).

7In this paper we assume causal sufficiency, that is, there is
no hidden time series which causes more than one observed time
series. However, we note that in the confounded case, it is still
the case that in principle, the model of Granger causality with
instantaneous effects does not hold.

(3) can be simplified as

˜

xt = A

k
˜

xt�1 + L

˜

et, (6)

where ˜et = (e

|
1+(t�1)k, e

|
1+(t�1)k�1, ..., e

|
1+(t�1)k�(k�1))

|.
It can be seen that each component of ˜

e can also
be represented using a Gaussian mixture model
pẽi =

Pm
zi=1 w̃i,ziN (ẽi|µ̃i,zi , �̃

2
i,zi), i = 1, 2, ..., nk.

According to the structure of ˜

e, some components of
˜

e share the same Gaussian mixture parameters, i.e.,
w̃j+nl,c = wj,c, µ̃j+nl,c = µj,c, �̃j+nl,c = �j,c, j =

1, ..., n, l = 0, ..., k � 1, c = 1, ...,m.

Consequently, we can write down the conditional distribu-
tion p(

˜

xt|˜xt�1) as

p(

˜

xt|˜xt�1) =

X

zt

p(zt)

Z
p(

˜

et|zt)p(˜xt|˜et, ˜xt�1)d˜et,

where zt = (zt,1, ..., zt,nk)
|, p(zt) =

Qnk
i=1 p(zt,i) =Qnk

i=1 w̃i,zt,i , p(˜et|zt) =
Qnk

i=1 p(ẽt,i|zt,i) =
Qnk

i=1 N (ẽt,i

|µ̃i,zt,i , �̃
2
i,zt,i), and p(

˜

xt|˜et, ˜xt�1) = N (

˜

xt|Ak
˜

xt�1 +

L

˜

et,⇤). Here we assume a fixed and small ⇤ for regular-
ization, because there is no additional additive noise term in
(6). The model can be seen as an extension of the Indepen-
dent Factor Analysis (IFA) (Attias, 1999) with additional
constraints on the model parameters.

4.1. Parameter Estimation via EM algorithm

Given the subsampling factor k, we use the Expectation-
Maximization (EM) algorithm to obtain the maximum
likelihood estimation of the model parameters ⇥ =

(A, wi,c, µi,c,�i,c) . Considering zt and ˜

et as latent vari-
ables, we maximize the EM lower bound L(q,⇥) of the
data log-likelihood

P
t ln p(˜xt|˜xt�1,⇥) with respect to pa-

rameters ⇥ (M step) and find the distribution q(zt, ˜et) over
the latent variables (E step) alternately until convergence.

In the E step, given the parameters ⇥

0 from the pre-
vious iteration, the lower bound L(q,⇥0

) is maxi-
mized with respect to q, resulting in q(zt, ˜et|⇥0

) =

p(zt|˜xt, ˜xt�1,⇥
0
)p(

˜

et|zt, ˜xt, ˜xt�1,⇥
0
), which is the pos-

terior distribution of the latent variables.

In the M step, given the posterior distribution q(zt, ˜et|⇥0
),

the lower bound is maximized with respect to the param-
eters ⇥. Because the EM lower bound can be decom-
posed into several terms which only depend on subsets of
the parameters, the parameters can be updated indepen-
dently. However, wi,c and µi,c must be updated jointly due
to the constraints

Pm
c=1 wi,c = 1,

Pm
c=1 wi,cµi,c = 0, i =

1, ..., n. This is a constrained nonlinear programming prob-
lem and we solve it by interior point methods (Byrd et al.,
1999). After updating wi,c and µi,c, we update �i,c which
has a closed form solution. Because the lower bound in-
volves A

l
, l = 1, ...k, A has no analytic solutions. Thus
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we update A via the conjugate gradient descent algorithm.
In practice, the convergence of EM algorithm is very slow
when the the noise variance ⇤ approches zero. We adopt
the adaptive overrelaxed EM (Salakhutdinov & Roweis,
2003) algorithm to obtain a faster rate of convergence. De-
tails of the EM algorithm can be found in Section 3 of the
Supplementary Material.

4.2. Mean Field Approximation

One problem with the EM algorithm is that the number
of Gaussian mixture components will increase exponen-
tially in nk. Thus, in the E step, the posterior marginals
p(ẽt,i, zt,i|˜xt, ˜xt�1) would involve m

nk sums at each iter-
ation. To make the algorithm computationally more effi-
cient, we make the mean field assumption and approximate
the true posterior p(zt, ˜et|˜xt, ˜xt�1) with the factorized dis-
tribution q(zt, ˜et) = q(zt)q(˜et). Using the factorized pos-
terior distribution, we can obtain the posterior of ˜et and zt,i

independently. Therefore, the computational load is linear
in nk. The variational EM lower bound is

L =

X

t

X

zt

q(zt)

Z
q(

˜

et) ln p(˜xt, ˜et, zt|˜xt�1,⇥) d

˜

et

�
X

t

X

zt

q(zt) ln q(zt)�
X

t

Z
q(

˜

et) ln q(˜et) d˜et.

The variational M step is similar to the M step in the orig-
inal EM algorithm. In the E step, given ⇥

0 from the previ-
ous M step, q(zt|⇥0

) and q(

˜

et|⇥0
) are updated alternately

by maximizing the lower bound:

q(zt|⇥0
) / exp hln p(˜xt, ˜et, zt|˜xt�1,⇥

0
)iq(ẽt|⇥0), (7)

q(

˜

et|⇥0
) / exp hln p(˜xt, ˜et, zt|˜xt�1,⇥

0
)iq(zt|⇥0). (8)

In (7), the expectation of the log-likelihood with respect to
q(

˜

et|⇥0
) is calculated as

hln p(˜xt, ˜et, zt|˜xt�1,⇥
0
)iq(ẽt|⇥0)

=

nkX

i=1

ln p(zt,i) +

nkX

i=1

ln p(Lt,i|zt,i) + const,

where

ln p(Lt,i|zt,i) =�

D
(ẽt,i � µ̃

0
i,zt,i)

2
E

q(ẽt,i|⇥0)

2�̃

02
i,zt,i

� ln �̃

0
i,zt,i .

Thus, the posterior q(zt|⇥0
) can be obtained as

q(zt,i|⇥0
) =

p(Lt,i|zt,i)p(zt,i)Pm
z0
t,i=1 p(Lt,i|z0t,i)p(z0t,i)

. (9)

It can be seen that the computational complexity of the pos-
teriors q(zt,i|⇥0

) is linear in nk. In (8), the expectation of

the log-likelihood with respect to q(zt|⇥0
) is in the form of

a log-likelihood of joint Gaussian distribution and q(

˜

et|⇥0
)

thus can be efficiently obtained from the Gaussian posterior
distribution.

4.3. Determination of the subsampling factor k

One practical issue is that the subsampling factor k is usu-
ally unknown. Therefore we need a principled way to
choose the best k for our algorithms. In this paper, we
used cross-validation on the log-likelihood of the models to
choose the optimal k; specifically, we consider the value of
k which gives the highest cross-validated log-likelihood as
the optimal one. In our experiments, we used 5-fold cross
validation.

5. Experimental Results
In this section we present experimental results on both
simulated and read data to show the effectiveness of the
proposed method to estimate the temporal causal relations
from subsampled data. The objective function to be max-
imized by the proposed estimation methods is not convex.
To avoid possible local optima, we used the transition ma-
trix estimated by fitting VAR on the subsampled data to
initialize the causal transition matrix A, and use random
initializations for the remaining parameters. With such an
initialization scheme, we did not find any case where the
proposed methods converge to unwanted solutions.

5.1. Simulated Data

To investigate the effectiveness of the proposed estimation
methods, we conducted a series of simulations. We first
generated the data at casual frequency by the VAR model
(1) with randomly generated matrix A and independent
Gaussian mixture noises et. The elements in A are uni-
formly distributed between �0.5 and 0.5. The Gaussian
mixture model contains two components for each dimen-
sion. We used both super-Gaussian and sub-Gaussian dis-
tributions for the noise terms. The parameters were wi,1 =

0.8, wi,2 = 0.2, µi,1 = 0, µi,2 = 0, �i,1 = 0.05, �i,2 = 1

for super-Gaussian noise and wi,1 = 0.5, wi,2 = 0.5,
µi,1 = �2, �i,2 = 2, �i,1 = 0.5, �i,2 = 0.5 for
sub-Gaussian noise. Low-resolution observations were ob-
tained by subsampling the high-resolution data by subsam-
pling factor k. We tested data with dimension n = 2, sub-
sampling factor k = 2 and 3, and sample size T = 100 and
300, respectively. We denote the proposed EM algorithm
by Non-Gaussian EM (NG-EM) and the mean-field ap-
proximated algorithm by Non-Gaussian Mean-Field (NG-
MF).

To our best knowledge, the problem considered in this
paper has not been well studied, and we have not found
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any existing method aiming at recovering the causal transi-
tion matrix from subsampled data. We compared our meth-
ods to two classical time series disaggregation methods:
the Boot-Feibes-Lisma (BFL) method (Boot et al., 1967)
and Stram-Wei (SW) method (Stram & Wei, 1986). These
two methods try to recover the high resolution data using
interpolation-based methods. To show the advantages of
using non-Gaussianity of the data, we also compared our
NG-EM and NG-MF with the method assuming Gaussian
noise, denoted as G-EM, obtained by setting the noise dis-
tribution in NG-EM to a single Gaussian one. We repeated
the experiments for 20 replications.

Table 1 shows the mean square error (MSE) of the esti-
mated parameters A. One can see that as the sample sizes
T increases, our methods obtain better results. Further-
more, the estimation error increases with the subsampling
factor k. Compared to other methods, our method achieves
the lowest estimation error in the estimated A. The method
assuming Gaussian noise produces higher error because the
solution is not unique and the algorithm may converge to an
local optimal solution which is far away from the true A.
BFL and SW do not perform well because they are based
on interpolation and thus lose some high frequency infor-
mation. Our methods can also recover the causal-frequency
data based on the estimated noise terms ˆ

et. We used the
posterior mean of noise terms as the estimate. Given the
estimated noise, we can reconstruct the causal-frequency
data based on the VAR model. Figure 1 gives the scatter
plot of the estimated causal-frequency data against the true
ones; one can see that NG-EM has a much better recov-
ery performance than BFL, as indicated by a higher Peak
Signal-to-Noise Ratio (PSNR). Moreover, as noted above,
the causal-frequency data recovered by BFL cannot give a
reliable estimation of A.

To further illustrate the limitations of Gaussian noise mod-
els, we plot the contour of the log-likelihood function with
respect to the two off-diagonal elements of ˆ

A. Given a pair
of off-diagonal elements, we optimized the log-likelihood
over the diagonal elements. The off-diagonal elements
were sampled from �0.8 to 0.8 at an interval of 0.01. The
true causal matrix A is

⇥
0.65, �0.16; 0.15, 0.65

⇤
.

Figure 2 shows the negative maximum log-likelihood func-
tion of non-Gaussian and Gaussian models computed from
the subsampled data, with both super-Gaussian and sub-
Gaussian noise terms. We used the same noise parame-
ters as in the first simulation. It can be seen that, in both
super-Gaussian (a & b) and sub-Gaussian case (c & d),
the log-likelihood functions of Gaussian models have mul-
tiple solutions with the same likelihood value, while the
log-likelihood functions of non-Gaussian models have only
one global solution, which is around the true values. This
is consistent with the theoretical results that the causal re-
lations might not be uniquely determined using Gaussian

super-Gaussian noise sub-Gaussian noise
k=2 k=3 k=2 k=3

T=100 T=300 T=100 T=300 T=100 T=300 T=100 T=300
NG-EM 7.27e-4 3.24e-4 1.70e-3 6.57e-4 5.76e-3 2.36e-3 1.31e-2 5.33e-3
NG-MF 5.09e-3 2.62e-3 6.98e-3 5.22e-3 6.72e-3 3.31e-3 1.80e-2 6.17e-3
G-EM 1.33e-2 7.23e-3 1.63e-2 8.66e-3 3.56e-2 7.71e-3 2.64e-2 8.06e-3
BFL 3.89e-1 3.93e-1 4.87e-1 4.82e-1 3.61e-1 3.73e-1 4.80e-1 4.76e-1
SW 8.76e-2 8.51e-2 8.67e-2 8.47e-2 8.81e-2 8.73e-2 9.01e-2 8.57e-2

Table 1. Comparison of different methods on simulated super-
Gaussian and sub-Gaussian data using Mean Square Error (MSE)
between the true A and the estimated A. The results are shown
for different subsampling factors (k = 2, 3) and different length
of data (T = 100, 300).

noise models.

Finally, to test the effectiveness of the subsampling fac-
tor determination scheme in Section 4.3, we applied cross-
validation on 50 randomly generated subsampled time se-
ries of length T = 100 and found that this scheme always
produces the correct value of k, no matter k = 2 or 3.
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(a) Recovered by NG-EM (b) Recovered by BFL

Figure 1. Recovery of the causal-frequency data using the pro-
posed EM method and the traditional methods: (a) The recovery
results of the proposed NG-EM method (PSNR = 13.4); (b)
The recovery results of the BFL method (PSNR = 7.52).

5.2. Real Data

We conducted experiments on the Temperature Ozone data
and the Temperature in House data (Peters et al., 2013).
We used the subsampling factor determination scheme in
Section 4.3 to determine the optimal value of k as well
as whether the frequency of the given data is lower than
the causal frequency. For the data whose resolution is not
lower than the “causal” one (which corresponds to the opti-
mal sampling factor k determined by cross validation), we
manually subsampled them to generate low-resolution data
and then repeated the subsampling factor determination
procedure to find the optimal causal frequency and the cor-
responding causal relations. Since the BFL and SW meth-
ods do not aim to estimate the causal relations at causal
frequency, they are not suitable for comparison.

Temperature Ozone. The Temperature Ozone data is
the 50th causal-effect pair from the website https://
webdav.tuebingen.mpg.de/cause-effect/.

https://webdav.tuebingen.mpg.de/cause-effect/
https://webdav.tuebingen.mpg.de/cause-effect/
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Figure 2. The contour plot of the negative log-likelihood function
with repect to the two off-diagonal elmemnts of Â: (a) nega-
tive log-likelihood function of the Gaussian model computed on
super-Gaussian data, (b) negative log-likelihood function of the
non-Gaussian model computed on super-Gaussian data, (c) neg-
ative log-likelihood function of the Gaussian model computed
on sub-Gaussian data, (d) negative log-likelihood function of the
non-Gaussian model computed on sub-Gaussian data.

The data have records of daily temperature X and
ozone density Y . The ground truth is Y ! X . The
cross-validated log-likelihood is �89.638,�89.197,
and �90.246, respectively, as k ranges from 1 to 3.
Therefore, we consider k = 2 as the best subsam-
pling factor. The estimated transition matrix A for

k = 1, 2, 3 is

0.7285 0.1769

�0.0378 0.9526

�
,

0.8312 0.1370

0.0093 0.9537

�
,

and

0.8816 0.0989

0.0292 0.9462

�
, respectively. We can see from

the results that the transition matrix A at k = 2 gives the
weakest response from effect X to cause Y , which seems
plausible.

Temperature in House. The Temperature in House
dataset contains temperature recorded hourly in six rooms
(1 - Shed, 2 - Outside, 3 - Kitchen Boiler, 4 - Living room,
5 - WC, 6 - Bathroom) of a house. We analyzed the causal
relations 2 ! 3 and 2 ! 4 because they are relatively
strong. For 2 ! 3, the cross-validated log-likelihood is
183.596, 184.076, 184.139, 184.168, and 184.183, respec-
tively, as k ranges from 1 to 5. The estimated transition

matrix A is

0.9476 �0.0024

0.0621 0.9394

�
,

0.9735 �0.0011

0.0329 0.9688

�
,


0.9823 �0.0007

0.0223 0.9790

�
,


0.9867 �0.0005

0.0169 0.9841

�
, and


0.9894 �0.0004

0.0136 0.9873

�
, respectively. It is interesting to

note that the cross-validated likelihood always increases
as k varies from 1 (corresponding to a 1-hour sampling
interval) to 5 (12-minute sampling interval) . This indicates
that the causal frequency is very high; in fact, note that
2 and 3 are adjacent, and it seems reasonable to consider
the two processes as continuous ones. If we allow k to go
to infinity, the VAR model provides an approximator to
continuous processes.

For 2 ! 4, the cross-validated log-likelihood is
273.533, 273.716, 322.347, 370.555, and 370.547, respec-
tively, as k ranges from 1 to 5. The estimated causal transi-

tion matrix is

0.9416 0.0077

0.0638 0.9557

�
,


0.9707 0.0037

0.0338 0.9764

�
,


0.9804 0.0024

0.0228 0.9842

�
,


0.9853 0.0018

0.0172 0.9880

�
, and


0.9883 0.0014

0.0138 0.9905

�
. Here it seems that k = 4 (corre-

sponding to a 15-minute sampling interval) should be
preferred. Note that 2 and 4 are not adjacent. Causal
influences between them take some time; in this case, a
VAR model with a 15-minute sampling interval might
provide a good approximation to the true processes.

6. Conclusion
Sometimes the observed time series were actually obtained
by subsampling the true processes. We have considered the
issue of recovering linear temporal causal relations at the
true causal frequency from such time series. We were con-
cerned with the situation, under certain mild conditions on
the structure of the causal relations where the noise terms
in the causal time series are non-Gaussian. We have shown
that in this situation, the causal relations are identifiable.
Two practical methods, one based on the EM algorithm
and the other the variational inference framework, have
been proposed to estimate the causal relations from low-
resolution data. The method based on variational inference
is computationally more efficient, and is recommended if
the data have high dimensions or many points. As a line
of our future research, we are trying to further improve the
computational efficiency of the proposed methods, espe-
cially the one based on variational inference, to solve large-
scale problems.
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1. Proof of Theorem 2 in Section 3.2

Proof. Let us consider the limit when T ! 1. According to (3), based on the second-order statistical information, one
can uniquely determine A

k and A

0k, that is,
A

k = A

0k. (S1)

We can then determine the error term ~
et. Then the corresponding random vector ~e follows both the representation (5) and

~
e = L

0
ẽ

0, (S2)

where
L

0 = [I A0
A

02 · · ·A0k�1], (S3)

and ẽ

0 = (e0(0)1 , ..., e0(0)n , e0(1)1 , ..., e0(1)n , ..., e0(k�1)
1 , ..., e0(k�1)

n )| with e0(l)i , l = 0, ..., k � 1, having the same distribution
pe0i .

According to Proposition 1, each column of L0 is a scaled version of a column of L. Denote by Lln+i, l = 0, ..., k � 1;
i = 1, ..., n, the (ln + i)th column of L, and similarly for L0

ln+i. According to the Uniqueness Theorem in (Eriksson &
Koivunen, 2004) (which directly follows (ii) of Lemma 1), we know that under condition A2, for each i, there exists one and
only one j such that the distribution of e(l)i , l = 0, ..., k�1 (which have the same distribution), is the same as the distribution
of e0(l)j , l = 0, ..., k � 1, up to changes of location and scale. As a consequence, the columns {L0

ln+j | l = 0, ..., k � 1}
correspond to {Lln+i | l = 0, ..., k � 1} up to the permutation and scaling arbitrariness. We now show that L0

ln+j
corresponds to Lln+i and that j = i.

According to assumption A1, all eigenvalues of A have modulus smaller than one, and hence the eigenvalues of AA

| are
smaller than 1. Then we know that for any n-dimensional vector v,

||Av||  ||A|| · ||v|| =
p

||AA

||| · ||v|| < ||v||.

According to the structure of L, L(l+1)n+i = ALln+i. Considering Lln+i as v in the above equation, one can see
||L(l+1)n+i|| < ||Lln+i||, and similarly we have ||L0

(l+1)n+j || < ||L0
ln+j ||. Hence, L0

ln+j is proportional to Lln+i; more
specifically, we have L0

ln+j = �liLln+i, where 8 l, �li have the same absolute value but possibly different signs. In
particular, L0

j = �0iLi. Bearing in mind that Li and L0
j must be columns of I, as implied by the structure of L and L

0, we
can see that �0i = 1 and that i = j. Consequently, for l > 0, �li must be 1 or �1. Also considering the structures of L (4)
and L

0 (S3), we see that 8l > 0, A0l = A

l
Dl, where Dl are diagonal matrices with 1 or �1 as their diagonal entries. If

both A

0 and A have positive diagonal entries, D must be the identity matrix, i.e., A0 = A. Therefore statement (i) is true.

We have shown that
L0
ln+i = �liLln+i, (S4)

where �0i = 1 and for l > 0, �li are 1 or �1. We are now ready to prove (ii). If each pei is asymmetric, ei and �ei have
different distributions. Consequently, the representation (S2) does not hold any more if one changes the signs of a subset
of, but not all, non-zero elements of {L0

ln+j | l = 0, ..., k � 1}. This implies that for non-zero Lln+i, �li, including �0i,
have the same sign, and they are therefore 1 since �0i = 1. Setting l = 1 in (S4) gives A0 = A. That is, (ii) is true.

Let us now show that (iii) holds. If k = 1, this statement trivially holds. Now consider the case where k > 1. Because of
(S1), we have

A

k�1
A = A

0k�1
A

0. (S5)

Since A is of full rank, Ak�1 is also invertible. Recall A0l = A

l
Dl. Denote by dl,i the (i, i)th entry of Dl. Multiplying

both sides of the above equation with A

�(k�1) from the left gives A = Dk�1AD1, i.e., 8 i & j, aij = aijdk�1,id1,j .



Supplementary Document for “Discovering Temporal Causal Relations from Subsampled Data”

Thus, 8 i & j with aij 6= 0 we have dk�1,id1,j = 1. Since aii are not zero, we have dk�1,i = d1,i. Consequently,
aij = aijd1,id1,j , and 8 i & j with aij 6= 0, d1,id1,j = 1, or d1,i = d1,j . Furthermore, since the graph implied by
A is weakly connected, for any two nodes i0 and j0, we know that there is a undirected path connecting them, such that
d1,i0 = d1,j0 . In words, D1 is either I or �I. Finally, if k > 1 is odd, A0k�1 = (AD1)k�1 = A

k�1, and then (S5) implies
that A0 = A. (iii) then holds.

2. Proof of Theorem 3 in Section 3.3

Proof. Suppose the model of Granger causality with instantaneous effects, (2), holds, the VAR error terms of x̃t can be
written as a linear transformation of n independent variables; denote by W this linear transformation.

On the other hand, the error terms ~et admit the representation (5). Since A is not diagonal, L contains at least (n + 1)
columns none of which is proportional to each other. Since all of eit are non-Gaussian, Lemma 1 (i) implies that all
columns in L are proportional to some columns in W. This implies that W has at least (n+ 1) columns none of which is
proportional to each other; however, W has only n columns, resulting in a contradiction. Therefore the model of Granger
causality with instantaneous effects does not hold.

3. Details of the EM Algorithm in Section 4.1

Instead of directly maximizing the data log-likelihood
P

t ln p(x̃t|x̃t�1,⇥), the EM algorithm maximizes the lower bound
of the data log-likelihood, i.e.,

L(q,⇥) =
X

t

X

zt

Z

q(zt, ẽt) ln
p(x̃t, ẽt, zt|x̃t�1,⇥)

q(zt, ẽt)
dẽt, (S6)

with respect to the distribution q(zt, ẽt) and the parameters ⇥ alternately until convergence.

E step In the E step, given the parameters ⇥0 from the previous M step, the lower bound is maximized with
respect to q(zt, ẽt). The maximum lower bound is obtained when q(zt, ẽt|⇥0) equals the posterior distribution
p(zt|x̃t, x̃t�1,⇥0)p(ẽt|zt, x̃t, x̃t�1,⇥0). The posterior distribution is obtained as

p(z
t

|x̃t, x̃t�1,⇥
0) =

p(x̃t|x̃t�1, zt)p(zt)
P

z

0
t
p(x̃t|x̃t�1, z0t)p(z

0
t)
, (S7)

p(ẽt|zt, x̃t, x̃t�1,⇥
0) =N (ẽt|µ̃zt + ⌃̃|

zt
L

|(L⌃̃
ztL

| + ⇤)�1

(x̃t �A

k
x̃t�1 � Lµ̃

zt), ⌃̃zt � ⌃̃|
zt

L

|(L⌃̃
ztL

| + ⇤)�1
L⌃̃

zt), (S8)

where µ̃
zt = (µ̃1,zt,1 , ..., µ̃nk,zt,nk)

| and ⌃̃
zt = diag(�̃2

1,zt,1 , ..., �̃
2
nk,zt,nk

).

M step In the M step, given the posterior distributions (S7) (S8) from the E step, the parameters are updated by maxi-
mizing the lower bound with respect to ⇥. The lower bound can be decompsed into four terms each of which only contains
a subset of the parameters, i.e.,

L(q,⇥) = L1(q, w) + L2(q, µ,�) + L3(q,A) + L4(q). (S9)

The four terms are calculated as

L1 =
X

t

nk
X

i=1

m
X

zt,i=1

p(zt,i|x̃t, x̃t�1,⇥
0) ln p(zt,i) =

X

t

nk
X

i=1

p
X

zt,i=1

p(zt,i|x̃t, x̃t�1,⇥
0) ln w̃i,zt,i , (S10)

L2 =
X

t

nk
X

i=1

m
X

zt,i=1

Z

p(ẽt,i, zt,i|x̃t, x̃t�1,⇥
0) ln p(ẽt,i|zt,i)dẽt,i

= �1

2

X

t

nk
X

i=1

m
X

zt,i=1

Z

p(ẽt,i, zt,i|x̃t, x̃t�1,⇥
0)

 

(ẽi � µ̃i,zt,i)
2

�̃2
i,zt,i

+ ln 2⇡ + 2 ln �̃i,zt,i

!

dẽt,i, (S11)
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L3 =
X

t

Z

p(ẽt|x̃t, x̃t�1,⇥
0) ln p(x̃t|x̃t�1, ẽt)dẽt,

= �1

2

X

t

n

⇥

(x̃t �A

k
x̃t�1)

|⇤�1(x̃t �A

k
x̃t�1)

⇤

� 2(x̃t �A

k
x̃t�1)

|⇤�1
L hẽtip(ẽt|x̃t,x̃t�1,⇥0))

+Tr
⇣

L

|⇤�1
L hẽtẽ|t ip(ẽt|x̃t,x̃t�1,⇥0)

⌘

+ ln |⇤|+ n ln 2⇡
o

, (S12)

L4 = �
X

t

X

zt

Z

p(zt, ẽt|x̃t, x̃t�1,⇥
0) ln p(zt, ẽt|x̃t, x̃t�1,⇥

0)dẽt, (S13)

where hf(e)ip(e) =
R

p(e)f(e)de.

Due to the zero mean constraints on the noises, µi,c and wi,c are updated by maximize L1 + L2 with the constraints
Pm

c=1 wi,c = 1,
Pm

c=1 wi,cµi,c = 0, i = 1, ..., n. This is a constrained nonlinear programming problem and we solve it
using interior point methods.

After updating µi,c and wi,c, � can be updated by maximizing L2, which gives

�2
i,c =

P

t

Pk
j=1

D

ẽ2t,i+n(j�1) � 2µi,cẽt,i+n(j�1)

E

p(ẽt,i+n(j�1),zt,i+n(j�1)=c|xt,xt�1)
P

t

Pk
j=1 p(zt,i+n(j�1) = c|xt,xt�1)

+ µ2
i,c, (S14)

Since there is no analytic solution to A, we update A using conjugate gradient descent algorithm. The gradient of L3 with
respect to A is given by
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, (S15)

where U = L

|⇤�1
L and J

ij is a matrix whose ij-th element is 1 and all the other elements are 0. U is composed of k ⇤ k
blocks of n ⇤ n matrices. Each sub-matrix is Umn = (Am)|⇤�1

A

n,m = 0, ..., k � 1, n = 0, ..., k � 1. The gradient of
each sub-matrix Umn is
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where mati0 j0 f(i
0
, j

0
) is a matrix whose i

0
j
0
-th element is f(i

0
, j

0
).
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